Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 933, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177602

RESUMO

Understanding mechanisms of antibody synergy is important for vaccine design and antibody cocktail development. Examples of synergy between antibodies are well-documented, but the mechanisms underlying these relationships often remain poorly understood. The leading blood-stage malaria vaccine candidate, CyRPA, is essential for invasion of Plasmodium falciparum into human erythrocytes. Here we present a panel of anti-CyRPA monoclonal antibodies that strongly inhibit parasite growth in in vitro assays. Structural studies show that growth-inhibitory antibodies bind epitopes on a single face of CyRPA. We also show that pairs of non-competing inhibitory antibodies have strongly synergistic growth-inhibitory activity. These antibodies bind to neighbouring epitopes on CyRPA and form lateral, heterotypic interactions which slow antibody dissociation. We predict that such heterotypic interactions will be a feature of many immune responses. Immunogens which elicit such synergistic antibody mixtures could increase the potency of vaccine-elicited responses to provide robust and long-lived immunity against challenging disease targets.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Proteínas de Protozoários/imunologia , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Anticorpos Antiprotozoários/isolamento & purificação , Anticorpos Antiprotozoários/metabolismo , Antígenos de Protozoários/genética , Antígenos de Protozoários/isolamento & purificação , Antígenos de Protozoários/metabolismo , Linhagem Celular , Drosophila melanogaster , Epitopos/imunologia , Humanos , Imunogenicidade da Vacina , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Proteínas de Protozoários/metabolismo , Desenvolvimento de Vacinas
2.
Cell Rep Med ; 2(7): 100326, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34337556

RESUMO

Reticulocyte-binding protein homolog 5 (RH5) is a leading Plasmodium falciparum blood-stage vaccine candidate. Another possible candidate, apical membrane antigen 1 (AMA1), was not efficacious in malaria-endemic populations, likely due to pre-existing antimalarial antibodies that interfered with the activity of vaccine-induced AMA1 antibodies, as judged by in vitro growth inhibition assay (GIA). To determine how pre-existing antibodies interact with vaccine-induced RH5 antibodies, we purify total and RH5-specific immunoglobulin Gs (IgGs) from malaria-exposed Malians and malaria-naive RH5 vaccinees. Infection-induced RH5 antibody titers are much lower than those induced by vaccination, and RH5-specific IgGs show differences in the binding site between the two populations. In GIA, Malian polyclonal IgGs show additive or synergistic interactions with RH5 human monoclonal antibodies and overall additive interactions with vaccine-induced polyclonal RH5 IgGs. These results suggest that pre-existing antibodies will interact favorably with vaccine-induced RH5 antibodies, in contrast to AMA1 antibodies. This study supports RH5 vaccine trials in malaria-endemic regions.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Adolescente , Adulto , Idoso , Anticorpos Neutralizantes/imunologia , Antimaláricos/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Imunoglobulina G/imunologia , Lactente , Malária Falciparum/epidemiologia , Masculino , Mali , Pessoa de Meia-Idade , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/imunologia , Vacinação , Adulto Jovem
3.
Mol Cell Proteomics ; 19(1): 155-166, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-29089373

RESUMO

Plasmodium falciparum malaria continues to evade control efforts, utilizing highly specialized sexual-stages to transmit infection between the human host and mosquito vector. In a vaccination model, antibodies directed to sexual-stage antigens, when ingested in the mosquito blood meal, can inhibit parasite growth in the midgut and consequently arrest transmission. Despite multiple datasets for the Plasmodium sexual-stage transcriptome and proteome, there have been no rational screens to identify candidate antigens for transmission-blocking vaccine (TBV) development. This study characterizes 12 proteins from across the P. falciparum sexual-stages as possible TBV targets. Recombinant proteins are heterologously expressed as full-length ectodomains in a mammalian HEK293 cell system. The proteins recapitulate native parasite epitopes as assessed by indirect fluorescence assay and a proportion exhibits immunoreactivity when tested against sera from individuals living in malaria-endemic Burkina Faso and Mali. Purified IgG generated to the mosquito-stage parasite antigen enolase demonstrates moderate inhibition of parasite development in the mosquito midgut by the ex vivo standard membrane feeding assay. The findings support the use of rational screens and comparative functional assessments in identifying proteins of the P. falciparum transmission pathway and establishing a robust pre-clinical TBV pipeline.


Assuntos
Anticorpos Bloqueadores/imunologia , Malária Falciparum/imunologia , Malária Falciparum/transmissão , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Proteínas Recombinantes/imunologia , Adulto , Animais , Anopheles/parasitologia , Epitopos/imunologia , Feminino , Células HEK293 , Humanos , Imunoglobulina G/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/epidemiologia , Malária Falciparum/virologia , Masculino , Mali/epidemiologia , Camundongos , Camundongos Endogâmicos BALB C , Mosquitos Vetores/parasitologia , Fosfopiruvato Hidratase/imunologia , Proteoma , Proteômica/métodos , Vacinação
4.
PLoS One ; 14(8): e0221034, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31430311

RESUMO

Several laboratories have created rat basophil leukemia (RBL) cell lines stably transfected with the human high affinity IgE receptor (FcεRIH). More recently, humanized RBL cell lines saw the introduction of reporter genes such as luciferase (RS-ATL8) and DsRed (RBL NFAT-DsRed). These reporters are more sensitive than their parental non-reporter humanized RBL cell lines. However, no studies so far have addressed the levels of FcεRIH surface expression on humanized RBL cell lines. This is a critical parameter, as it determines the ability of these cells to be efficiently sensitized with human IgE, hence it should affect the sensitivity of the cell assay-a critical parameter for any diagnostic application. Our purpose was to assess and compare the levels of expression of the transfected FcεRIH chain in humanized RBL cell lines. We compared surface levels of FcεRIαH by flow cytometry, using a fluorescently labelled monoclonal antibody (CRA-1/AER-37) and determined receptor numbers using calibration microspheres. FcεRIαH copy numbers were assessed by qPCR, and the sequence verified. Transfection with FcεRIγH cDNA was assessed for its ability to increase FcεRIαH expression in the NFAT-DsRed reporter. While both SX-38 and RS-ATL8 expressed about 500.000 receptors/cell, RBL 703-21 and NFAT-DsRed had approximately 10- to 30-fold lower FcεRIαH expression, respectively. This was neither related to FcεRIH gene copy numbers, nor to differences in steady state mRNA levels, as determined by qPCR and RT-qPCR, respectively. Instead, FcεRIαH surface expression appeared to correlate with the co-expression of FcεRIγH. Stable transfection of NFAT-DsRed cells with pBJ1 neo-huFcεRI gamma, which constitutively expresses FcεRIγH, increased FcεRIαH chain expression levels. Levels of FcεRIαH surface expression vary greatly between humanized RBL reporter cell lines. This difference will affect the sensitivity of the reporter system when used for diagnostic purposes.


Assuntos
Dosagem de Genes , Genes de Cadeia Pesada de Imunoglobulina/genética , Cadeias gama de Imunoglobulina/genética , Leucemia Basofílica Aguda/genética , Receptores de IgE/genética , Animais , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Genes Reporter/genética , Cadeias gama de Imunoglobulina/metabolismo , Leucemia Basofílica Aguda/patologia , Ratos , Receptores de IgE/metabolismo , Transfecção
5.
Cell ; 178(1): 216-228.e21, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31204103

RESUMO

The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is the leading target for next-generation vaccines against the disease-causing blood-stage of malaria. However, little is known about how human antibodies confer functional immunity against this antigen. We isolated a panel of human monoclonal antibodies (mAbs) against PfRH5 from peripheral blood B cells from vaccinees in the first clinical trial of a PfRH5-based vaccine. We identified a subset of mAbs with neutralizing activity that bind to three distinct sites and another subset of mAbs that are non-functional, or even antagonistic to neutralizing antibodies. We also identify the epitope of a novel group of non-neutralizing antibodies that significantly reduce the speed of red blood cell invasion by the merozoite, thereby potentiating the effect of all neutralizing PfRH5 antibodies as well as synergizing with antibodies targeting other malaria invasion proteins. Our results provide a roadmap for structure-guided vaccine development to maximize antibody efficacy against blood-stage malaria.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antiprotozoários/imunologia , Eritrócitos/parasitologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Adolescente , Adulto , Animais , Sítios de Ligação , Proteínas de Transporte/imunologia , Reações Cruzadas/imunologia , Epitopos/imunologia , Feminino , Células HEK293 , Voluntários Saudáveis , Humanos , Malária Falciparum/parasitologia , Masculino , Merozoítos/fisiologia , Pessoa de Meia-Idade , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/imunologia , Coelhos , Ratos , Ratos Sprague-Dawley , Adulto Jovem
6.
Nat Microbiol ; 4(9): 1497-1507, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31133755

RESUMO

The most widespread form of malaria is caused by Plasmodium vivax. To replicate, this parasite must invade immature red blood cells through a process requiring interaction of the P. vivax Duffy binding protein (PvDBP) with its human receptor, the Duffy antigen receptor for chemokines. Naturally acquired antibodies that inhibit this interaction associate with clinical immunity, suggesting PvDBP as a leading candidate for inclusion in a vaccine to prevent malaria due to P. vivax. Here, we isolated a panel of monoclonal antibodies from human volunteers immunized in a clinical vaccine trial of PvDBP. We screened their ability to prevent PvDBP from binding to the Duffy antigen receptor for chemokines, and their capacity to block red blood cell invasion by a transgenic Plasmodium knowlesi parasite genetically modified to express PvDBP and to prevent reticulocyte invasion by multiple clinical isolates of P. vivax. This identified a broadly neutralizing human monoclonal antibody that inhibited invasion of all tested strains of P. vivax. Finally, we determined the structure of a complex of this antibody bound to PvDBP, indicating the molecular basis for inhibition. These findings will guide future vaccine design strategies and open up possibilities for testing the prophylactic use of such an antibody.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Vivax/prevenção & controle , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Receptores de Superfície Celular/imunologia , Anticorpos Antiprotozoários/química , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Antígenos de Protozoários/metabolismo , Cristalografia por Raios X , Sistema do Grupo Sanguíneo Duffy/metabolismo , Epitopos de Linfócito B , Eritrócitos/parasitologia , Variação Genética , Humanos , Fragmentos Fab das Imunoglobulinas , Vacinas Antimaláricas/administração & dosagem , Malária Vivax/parasitologia , Plasmodium knowlesi/genética , Plasmodium knowlesi/crescimento & desenvolvimento , Plasmodium knowlesi/imunologia , Plasmodium vivax/genética , Plasmodium vivax/crescimento & desenvolvimento , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Reticulócitos/parasitologia
7.
Nat Commun ; 10(1): 1953, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31028254

RESUMO

Malaria vaccine design and prioritization has been hindered by the lack of a mechanistic correlate of protection. We previously demonstrated a strong association between protection and merozoite-neutralizing antibody responses following vaccination of non-human primates against Plasmodium falciparum reticulocyte binding protein homolog 5 (PfRH5). Here, we test the mechanism of protection. Using mutant human IgG1 Fc regions engineered not to engage complement or FcR-dependent effector mechanisms, we produce merozoite-neutralizing and non-neutralizing anti-PfRH5 chimeric monoclonal antibodies (mAbs) and perform a passive transfer-P. falciparum challenge study in Aotus nancymaae monkeys. At the highest dose tested, 6/6 animals given the neutralizing PfRH5-binding mAb c2AC7 survive the challenge without treatment, compared to 0/6 animals given non-neutralizing PfRH5-binding mAb c4BA7 and 0/6 animals given an isotype control mAb. Our results address the controversy regarding whether merozoite-neutralizing antibody can cause protection against P. falciparum blood-stage infections, and highlight the quantitative challenge of achieving such protection.


Assuntos
Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antiprotozoários/imunologia , Humanos , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/metabolismo , Plasmodium falciparum/imunologia , Plasmodium falciparum/patogenicidade , Primatas
8.
Front Immunol ; 9: 524, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593746

RESUMO

The invention of liver-humanized mouse models has made it possible to directly study the preerythrocytic stages of Plasmodium falciparum. In contrast, the current models to directly study blood stage infection in vivo are extremely limited. Humanization of the mouse blood stream is achievable by frequent injections of human red blood cells (hRBCs) and is currently the only system with which to study human malaria blood stage infections in a small animal model. Infections have been primarily achieved by direct injection of P. falciparum-infected RBCs but as such, this modality of infection does not model the natural route of infection by mosquito bite and lacks the transition of parasites from liver stage infection to blood stage infection. Including these life cycle transition points in a small animal model is of relevance for testing therapeutic interventions. To this end, we used FRGN KO mice that were engrafted with human hepatocytes and performed a blood exchange under immune modulation to engraft the animals with more than 50% hRBCs. These mice were infected by mosquito bite with sporozoite stages of a luciferase-expressing P. falciparum parasite, resulting in noninvasively measurable liver stage burden by in vivo bioluminescent imaging (IVIS) at days 5-7 postinfection. Transition to blood stage infection was observed by IVIS from day 8 onward and then blood stage parasitemia increased with a kinetic similar to that observed in controlled human malaria infection. To assess the utility of this model, we tested whether a monoclonal antibody targeting the erythrocyte invasion ligand reticulocyte-binding protein homolog 5 (with known growth inhibitory activity in vitro) was capable of blocking blood stage infection in vivo when parasites emerge from the liver and found it highly effective. Together, these results show that a combined liver-humanized and blood-humanized FRGN mouse model infected with luciferase-expressing P. falciparum will be a useful tool to study P. falciparum preerythrocytic and erythrocytic stages and enables the testing of interventions that target either one or both stages of parasite infection.


Assuntos
Modelos Animais de Doenças , Malária Falciparum , Animais , Anticorpos Monoclonais/farmacologia , Proteínas de Transporte/imunologia , Eritrócitos/parasitologia , Humanos , Hepatopatias/parasitologia , Malária Falciparum/parasitologia , Camundongos Knockout , Parasitemia/parasitologia , Plasmodium falciparum , Proteínas de Protozoários/imunologia
9.
Sci Rep ; 6: 30357, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27457156

RESUMO

The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) has recently emerged as a leading candidate antigen against the blood-stage human malaria parasite. However it has proved challenging to identify a heterologous expression platform that can produce a soluble protein-based vaccine in a manner compliant with current Good Manufacturing Practice (cGMP). Here we report the production of full-length PfRH5 protein using a cGMP-compliant platform called ExpreS(2), based on a Drosophila melanogaster Schneider 2 (S2) stable cell line system. Five sequence variants of PfRH5 were expressed that differed in terms of mutagenesis strategies to remove potential N-linked glycans. All variants bound the PfRH5 receptor basigin and were recognized by a panel of monoclonal antibodies. Analysis following immunization of rabbits identified quantitative and qualitative differences in terms of the functional IgG antibody response against the P. falciparum parasite. The antibodies induced by one protein variant were shown to be qualitatively similar to responses induced by other vaccine platforms. This work identifies Drosophila S2 cells as a clinically-relevant platform suited for the production of 'difficult-to-make' proteins from Plasmodium parasites, and identifies a PfRH5 sequence variant that can be used for clinical production of a non-glycosylated, soluble full-length protein vaccine immunogen.


Assuntos
Proteínas de Transporte/imunologia , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/imunologia , Animais , Anticorpos Monoclonais/imunologia , Basigina/imunologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Drosophila melanogaster , Imunoglobulina G/imunologia , Vacinas Antimaláricas/genética , Mutação
10.
Cell Host Microbe ; 17(1): 130-9, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25590760

RESUMO

Antigenic diversity has posed a critical barrier to vaccine development against the pathogenic blood-stage infection of the human malaria parasite Plasmodium falciparum. To date, only strain-specific protection has been reported by trials of such vaccines in nonhuman primates. We recently showed that P. falciparum reticulocyte binding protein homolog 5 (PfRH5), a merozoite adhesin required for erythrocyte invasion, is highly susceptible to vaccine-inducible strain-transcending parasite-neutralizing antibody. In vivo efficacy of PfRH5-based vaccines has not previously been evaluated. Here, we demonstrate that PfRH5-based vaccines can protect Aotus monkeys against a virulent vaccine-heterologous P. falciparum challenge and show that such protection can be achieved by a human-compatible vaccine formulation. Protection was associated with anti-PfRH5 antibody concentration and in vitro parasite-neutralizing activity, supporting the use of this in vitro assay to predict the in vivo efficacy of future vaccine candidates. These data suggest that PfRH5-based vaccines have potential to achieve strain-transcending efficacy in humans.


Assuntos
Proteínas de Transporte/imunologia , Imunidade Heteróloga , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Aotus trivirgatus , Modelos Animais de Doenças , Feminino , Malária/imunologia , Vacinas Antimaláricas/administração & dosagem , Testes de Neutralização
11.
PLoS Negl Trop Dis ; 8(9): e3124, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25254513

RESUMO

BACKGROUND: Parasite-specific IgE is thought to correlate with protection against Schistosoma mansoni infection or re-infection. Only a few molecular targets of the IgE response in S. mansoni infection have been characterised. A better insight into the basic mechanisms of anti-parasite immunity could be gained from a genome-wide characterisation of such S. mansoni allergens. This would have repercussions on our understanding of allergy and the development of safe and efficacious vaccinations against helminthic parasites. METHODOLOGY/PRINCIPAL FINDINGS: A complete medium- to high-throughput amenable workflow, including important quality controls, is described, which enables the rapid translation of S. mansoni proteins using wheat germ lysate and subsequent assessment of potential allergenicity with a humanised Rat Basophilic Leukemia (RBL) reporter cell line. Cell-free translation is completed within 90 minutes, generating sufficient amounts of parasitic protein for rapid screening of allergenicity without any need for purification. Antigenic integrity is demonstrated using Western Blotting. After overnight incubation with infected individuals' serum, the RS-ATL8 reporter cell line is challenged with the complete wheat germ translation mixture and Luciferase activity measured, reporting cellular activation by the suspected allergen. The suitability of this system for characterization of novel S. mansoni allergens is demonstrated using well characterised plant and parasitic allergens such as Par j 2, SmTAL-1 and the IgE binding factor IPSE/alpha-1, expressed in wheat germ lysates and/or E. coli. SmTAL-1, but not SmTAL2 (used as a negative control), was able to activate the basophil reporter cell line. CONCLUSION/SIGNIFICANCE: This method offers an accessible way for assessment of potential allergenicity of anti-helminthic vaccine candidates and is suitable for medium- to high-throughput studies using infected individual sera. It is also suitable for the study of the basis of allergenicity of helminthic proteins.


Assuntos
Alérgenos/imunologia , Antígenos de Helmintos/imunologia , Proteínas de Helminto/imunologia , Vacinas Protozoárias/imunologia , Schistosoma mansoni/imunologia , Adolescente , Adulto , Animais , Linhagem Celular Tumoral , Criança , Humanos , Masculino , Ratos , Adulto Jovem
12.
J Immunol ; 192(1): 245-58, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24293631

RESUMO

There is intense interest in induction and characterization of strain-transcending neutralizing Ab against antigenically variable human pathogens. We have recently identified the human malaria parasite Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) as a target of broadly neutralizing Abs, but there is little information regarding the functional mechanism(s) of Ab-mediated neutralization. In this study, we report that vaccine-induced polyclonal anti-PfRH5 Abs inhibit the tight attachment of merozoites to erythrocytes and are capable of blocking the interaction of PfRH5 with its receptor basigin. Furthermore, by developing anti-PfRH5 mAbs, we provide evidence of the following: 1) the ability to block the PfRH5-basigin interaction in vitro is predictive of functional activity, but absence of blockade does not predict absence of functional activity; 2) neutralizing mAbs bind spatially related epitopes on the folded protein, involving at least two defined regions of the PfRH5 primary sequence; 3) a brief exposure window of PfRH5 is likely to necessitate rapid binding of Ab to neutralize parasites; and 4) intact bivalent IgG contributes to but is not necessary for parasite neutralization. These data provide important insight into the mechanisms of broadly neutralizing anti-malaria Abs and further encourage anti-PfRH5-based malaria prevention efforts.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antiprotozoários/imunologia , Proteínas de Transporte/imunologia , Merozoítos/imunologia , Plasmodium falciparum/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/metabolismo , Anticorpos Antiprotozoários/metabolismo , Proteínas de Transporte/metabolismo , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Eritrócitos/imunologia , Eritrócitos/parasitologia , Humanos , Cinética , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Camundongos , Testes de Neutralização , Plasmodium falciparum/crescimento & desenvolvimento , Ligação Proteica/imunologia , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...